Merton Portfolio Optimization

1. Risky Asset Dynamics (GBM)

\[ dS_t = \mu S_t\,dt + \sigma S_t\,dW_t \]

2. Wealth Dynamics

\[ dX_t = (rX_t + \pi_t(\mu - r))\,dt + \pi_t \sigma\, dW_t \]

3. Objective Function

\[ \max_{\{\pi_t\}} \; \mathbb{E}[U(X_T)] \]

4. Hamilton–Jacobi–Bellman Equation

\[ \frac{\partial V}{\partial t} + \sup_{\pi} \left\{ (rx + \pi(\mu - r)) V_x + \frac{1}{2}\pi^2\sigma^2 V_{xx} \right\} = 0 \]
\[ V(T,x) = U(x) \]

5. CRRA Utility

\[ U(x) = \frac{x^{1-\gamma}}{1-\gamma} \]

6. Closed-Form Value Function

\[ V(t,x) = \frac{x^{1-\gamma}}{1-\gamma} e^{k(T-t)} \]
\[ k = (1-\gamma) \left( r + \frac{(\mu - r)^2}{2\gamma\sigma^2} \right) \]

7. Optimal Policy

\[ \pi^*(x) = \frac{\mu - r}{\gamma \sigma^2}\, x \]
\[ \pi^*(x) = -\frac{\mu - r}{\sigma^2} \frac{V_x}{V_{xx}} \]

8. State Space Discretization

\[ t \in [0, T], \quad N_t \text{ steps} \]
\[ x \in [x_{\min}, x_{\max}], \quad N_x \text{ grid points} \]
\[ x_{\min} > 0 \]
\[ \Delta t = \frac{T}{N_t}, \quad \Delta x = \frac{x_{\max} - x_{\min}}{N_x - 1} \]

9. Terminal Condition

\[ V(T, x) = \frac{x^{1-\gamma}}{1-\gamma} \]

10. Boundary Conditions

\[ V(t, x) = \frac{x^{1-\gamma}}{1-\gamma} \exp\left( k (T - t) \right) \]

11. Finite-Difference Approximations

\[ V_x \approx \frac{V_{i+1} - V_{i-1}}{2\Delta x} \]
\[ V_{xx} \approx \frac{V_{i+1} - 2V_i + V_{i-1}}{\Delta x^2} \]
\[ \frac{V_i^{n+1} - V_i^n}{\Delta t} + \mathcal{L} V_i^{n+1} = 0 \]

12. Tridiagonal Linear System

\[ a_i V_{i-1}^{n+1} + b_i V_i^{n+1} + c_i V_{i+1}^{n+1} = V_i^n \]
\[ a_i v_{i-1} + b_i v_i + c_i v_{i+1} = d_i \]

13. PINN Derivatives

\[ V_t,\; V_x,\; V_{xx} \]